1,284 research outputs found

    Modeling CHANDRA Low Energy Transmission Grating Spectrometer Observations of Classical Novae with PHOENIX. I. V4743 Sagittarii

    Full text link
    We use the PHOENIX code package to model the X-ray spectrum of Nova V4743 Sagittarii observed with the LETGS onboard the Chandra satellite on March 2003. Our atmosphere models are 1D spherical, expanding, line blanketed, and in full NLTE. To analyze nova atmospheres and related systems with an underlying nuclear burning envelope at X-ray wavelengths, it was necessary to update the code with new microphysics, as discussed in this paper. We demonstrate that the X-ray emission is dominated by thermal bremsstrahlung and that the hard X-rays are dominated by Fe and N absorption. The best fit to the observation is provided at a temperature of T_eff = 5.8 x 10^5 K, with L_bol = 50 000 L_sun. The models are calculated for solar abundances. It is shown that the models can be used to determine abundances in the nova ejecta.Comment: 8 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Spectral Energy Distributions for Disk and Halo M--Dwarfs

    Get PDF
    We have obtained infrared (1 to 2.5 micron) spectroscopy for 42 halo and disk dwarfs with spectral type M1 to M6.5. These data are compared to synthetic spectra generated by the latest model atmospheres of Allard & Hauschildt. Photospheric parameters metallicity, effective temperature and radius are determined for the sample. We find good agreement between observation and theory except for known problems due to incomplete molecular data for metal hydrides and water. The metal-poor M subdwarfs are well matched by the models as oxide opacity sources are less important in this case. The derived effective temperatures for the sample range from 3600K to 2600K; at these temperatures grain formation and extinction are not significant in the photosphere. The derived metallicities range from solar to one-tenth solar. The radii and effective temperatures derived agree well with recent models of low mass stars.Comment: 24 pages including 13 figures, 4 Tables; accepted by Ap

    MESAS: Measuring the Emission of Stellar Atmospheres at Submm/mm wavelengths

    Full text link
    In the early stages of planet formation, small dust grains grow to become mm sized particles in debris disks around stars. These disks can in principle be characterized by their emission at submillimeter and millimeter wavelengths. Determining both the occurrence and abundance of debris in unresolved circumstellar disks of A-type main-sequence stars requires that the stellar photospheric emission be accurately modeled. To better constrain the photospheric emission for such systems, we present observations of Sirius A, an A-type star with no known debris, from the JCMT, SMA, and VLA at 0.45, 0.85, 0.88, 1.3, 6.7, and 9.0 mm. We use these observations to inform a PHOENIX model of Sirius A's atmosphere. We find the model provides a good match to these data and can be used as a template for the submm/mm emission of other early A-type stars where unresolved debris may be present. The observations are part of an ongoing observational campaign entitled Measuring the Emission of Stellar Atmospheres at Submm/mm wavelengths (MESAS)Comment: 17 pages, 1 figure, Accepted to AJ on April 25th 201

    Nickel Mixing in the Outer Layers of SN 1987A

    Full text link
    Supernova 1987A remains the most well-observed and well-studied supernova to date. Observations produced excellent broad-band photometric and spectroscopic coverage over a wide wavelength range at all epochs. Here, we focus on the very early spectroscopic observations. Only recently have numerical models been of sufficient detail to accurately explain the observed spectra. In SN 1987A, good agreement has been found between observed and synthetic spectra for day one, but by day four, the predicted Balmer lines become much weaker than the observed lines. We present the results of work based on a radiation-hydrodynamic model by Blinnikov and collaborators. Synthetic non-LTE spectra generated from this model by the general radiation transfer code PHOENIX strongly support the theory that significant mixing of nickel into the outer envelope is required to maintain strong Balmer lines. Preliminary results suggest a lower limit to the average nickel mass of 1.0 \times 10^{-5} solar masses is required above 5000 \kmps by day four. PHOENIX models thus have the potential to be a sensitive probe for nickel mixing in the outer layers of a supernova.Comment: 16 pages, 7 figures, ApJ, v556 2001 (in press

    Determining Parameters of Cool Giant Stars by Modeling Spectrophotometric and Interferometric Observations Using the SAtlas Program

    Full text link
    Context: Optical interferometry is a powerful tool for observing the intensity structure and angular diameter of stars. When combined with spectroscopy and/or spectrophotometry, interferometry provides a powerful constraint for model stellar atmospheres. Aims: The purpose of this work is to test the robustness of the spherically symmetric version of the Atlas stellar atmosphere program, SAtlas, using interferometric and spectrophotometric observations. Methods: Cubes (three dimensional grids) of model stellar atmospheres, with dimensions of luminosity, mass, and radius, are computed to fit observations for three evolved giant stars, \psi Phoenicis, \gamma Sagittae, and \alpha Ceti. The best-fit parameters are compared with previous results. Results: The best-fit angular diameters and values of \chi^2 are consistent with predictions using Phoenix and plane-parallel Atlas models. The predicted effective temperatures, using SAtlas, are about 100 to 200 K lower, and the predicted luminosities are also lower due to the differences in effective temperatures. Conclusions: It is shown that the SAtlas program is a robust tool for computing models of extended stellar atmospheres that are consistent with observations. The best-fit parameters are consistent with predictions using Phoenix models, and the fit to the interferometric data for \psi Phe differs slightly, although both agree within the uncertainty of the interferometric observations.Comment: 5 pages, 6 figures, Accepted for publication in A&A as a Research Not

    Spectral synthesis of circumstellar disks - application to white dwarf debris disks

    Full text link
    Gas and dust disks are common objects in the universe and can be found around various objects, e.g. young stars, cataclysmic variables, active galactic nuclei, or white dwarfs. The light that we receive from disks provides us with clues about their composition, temperature, and density. In order to better understand the physical and chemical dynamics of these disks, self-consistent radiative transfer simulations are inevitable. Therefore, we have developed a 1+1D radiative transfer code as an extension to the well-established model atmosphere code \verb!PHOENIX!. We will show the potential of the application of our code to model the spectra of white dwarf debris disks.Comment: 4 pages, 4 figures, to appear in: Proceedings of the 16th European Workshop on White Dwarf

    Molecular line opacity of LiCl in the mid-infrared spectra of brown dwarfs

    Full text link
    We present a complete line list for the X 1Sigma+ electronic ground state of LiCl computed using fully quantum-mechanical techniques. This list includes transition energies and oscillator strengths in the spectral region 0.3-39,640.7 cm-1 for all allowed rovibrational transitions in absorption within the electronic ground state. The calculations were performed using an accurate hybrid potential constructed from a spectral inversion fit of experimental data and from recent multi-reference single- and double-excitation configuration interaction calculations. The line list was incorporated into the stellar atmosphere code PHOENIX to compute spectra for a range of young to old T dwarf models. The possibility of observing a signature of LiCl in absorption near 15.8 microns is addressed and the proposal to use this feature to estimate the total lithium elemental abundance for these cool objects is discussed.Comment: 8 pages, 2 figures, 1 table. Accepted for publication in ApJ 613, Sept. 20 200
    • …
    corecore